login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal total dominating sets in the n-cycle graph.
5

%I #31 May 04 2023 17:33:48

%S 0,0,3,4,5,9,7,4,12,25,22,25,39,49,68,100,119,144,209,289,367,484,644,

%T 841,1130,1521,1983,2601,3480,4624,6107,8100,10717,14161,18807,24964,

%U 33004,43681,57918,76729,101639,134689,178364,236196,313007,414736,549289

%N Number of minimal total dominating sets in the n-cycle graph.

%H Andrew Howroyd, <a href="/A300738/b300738.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,1,1,0,-1,-1).

%F a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n > 9.

%F G.f.: x^3*(3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)).

%F a(2*n) = A001608(n)^2.

%F a(2*n-1) = A001608(2*n-1), where A001608 are the Perrin numbers.

%t Table[RootSum[-1 - # + #^3 &, #^n &] + (1 + (-1)^n) RootSum[-1 + #^2 + #^3 &, #^(n/2) &], {n, 20}]

%t Perrin[n_] := RootSum[-1 - # + #^3 &, #^n &]; Table[With[{b = Mod[n, 2, 1]}, Perrin[n/b]^b], {n, 20}]

%t LinearRecurrence[{0, 0, 1, 1, 1, 1, 0, -1, -1}, {0, 0, 3, 4, 5, 9, 7, 4, 12}, 20]

%t CoefficientList[Series[x^2 (3 + 4 x + 5 x^2 + 6 x^3 - 8 x^5 - 9 x^6)/(1 - x^3 - x^4 - x^5 - x^6 + x^8 + x^9), {x, 0, 20}], x]

%o (PARI) concat([0,0], Vec((3 + 4*x + 5*x^2 + 6*x^3 - 8*x^5 - 9*x^6)/((1 - x^2 - x^3)*(1 + x^2 - x^6)) + O(x^50)))

%Y Cf. A001608, A001638 (total dominating sets), A253413, A302653, A302655, A302918.

%K nonn,easy

%O 1,3

%A _Andrew Howroyd_, Apr 15 2018