Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Nov 12 2023 00:06:45
%S 1,0,0,5,0,3,10,8,7,15,6,24,20,35,16,9,5,63,30,80,12,24,48,120,11,15,
%T 70,45,32,195,18,224,10,7,126,13,60,323,160,16,24,399,48,440,96,27,
%U 240,528,15,56,30,40,140,675,90,33,9,55,390,840,36,899,448,17,20,39,14,1088,252,91,26,1224,33,1295,646,45
%N a(n) is the smallest positive number k such that k^2 + k*n + n^2 is a perfect square, or 0 if no such k exists.
%C A positive a(n) cannot be 1 or a multiple of n for n > 0 since there is no square in A002061 except 1. Also it is easy to show that a(n) cannot be 2 or 4 since a(2) = a(4) = 0.
%C From _Robert Israel_, Mar 12 2018: (Start)
%C If n >= 5 is odd, a(n) <= n^2/4 - n/2 - 3/4, with a(n) = n^2/4 - n/2 - 3/4 if n is a prime >= 5.
%C If n >= 10 and n == 2 (mod 4), a(n) <= n^2/8 - n/2 - 3/2, with equality if n/2 is a prime >= 5.
%C If n >= 16 and n == 0 (mod 4), 1 < a(n) <= n^2/16 - n/2 - 3, with equality if n/4 is 4 or a prime >= 5. (End)
%H Altug Alkan, <a href="/A300728/b300728.txt">Table of n, a(n) for n = 0..10000</a>
%H Altug Alkan, <a href="/A300728/a300728_1.png">Scatterplot of first differences for n <= 10^4</a>
%e a(2) = 0 because k^2 + 2*k + 4 = (k + 1)^2 + 3 cannot be a square for k > 0.
%e a(4) = 0 because k^2 + 4*k + 16 = (k + 2)^2 + 12 cannot be a square for k > 0.
%e a(5) = 3 because 3^2 + 3*5 + 5^2 = 7^2 and 3 is the least positive number with this property.
%p f:= proc(n) local k;
%p for k from 1 do if issqr(k^2 + k*n + n^2) then return k fi od
%p end proc:
%p f(1):= 0: f(2):= 0: f(4):= 0:
%p map(f, [$0..200]); # _Robert Israel_, Mar 12 2018
%t f[n_] := Module[{k},
%t For[k = 1, True, k++, If[IntegerQ[Sqrt[k^2 + k*n + n^2]], Return[k]]]];
%t f[1] = 0; f[2] = 0; f[4] = 0;
%t Map[f, Range[0, 200]] (* _Jean-François Alcover_, Nov 11 2023, after _Robert Israel_ *)
%o (Python)
%o from sympy.abc import x, y
%o from sympy.solvers.diophantine.diophantine import diop_quadratic
%o def A300728(n): return min((d[0] for d in diop_quadratic(x*(x+n)+n**2-y**2) if d[0]>0), default=0) if n else 1 # _Chai Wah Wu_, Nov 11 2023
%Y Cf. A000290, A003136, A055527.
%K nonn,look
%O 0,4
%A _Altug Alkan_, Mar 11 2018