login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000367(n)/A001067(n).
5

%I #32 Jun 24 2023 06:36:55

%S 1,1,1,1,5,1,7,1,1,1,11,1,13,7,5,1,17,1,19,1,1,11,23,1,25,13,1,7,29,1,

%T 31,1,11,17,35,1,37,19,13,1,41,1,43,11,5,23,47,1,49,1,17,13,53,1,5,7,

%U 19,29,59,1,61,31,1,1,65,11,67,17,23,7,71,1,73,37

%N a(n) = A000367(n)/A001067(n).

%C a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.

%C The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.

%C Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

%H Jeppe Stig Nielsen, <a href="/A300711/b300711.txt">Table of n, a(n) for n = 1..10000</a>

%H Bernd C. Kellner, <a href="http://dx.doi.org/10.1090/S0025-5718-06-01887-4">On irregular prime power divisors of the Bernoulli numbers</a>, Math. Comp. 76 (2007) 405-441.

%F a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).

%F a(n) * A195989(n) = n. - _Peter Luschny_, Mar 12 2018

%F From _Jianing Song_, Apr 05 2021: (Start)

%F a(n) = gcd(numerator(Bernoulli(2n)), 2n).

%F a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

%e a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.

%p A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):

%p P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then

%p P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # _Peter Luschny_, Mar 12 2018

%t Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]

%o (Julia)

%o using Nemo

%o function A300711(n)

%o b = bernoulli(n)

%o div(numerator(b), numerator(b*QQ(1,n)))

%o end

%o [A300711(n) for n in 2:2:148] |> println # _Peter Luschny_, Mar 11 2018

%o (PARI) a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ _Jianing Song_, Apr 05 2021

%o (PARI) upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ _Jeppe Stig Nielsen_, Jun 22 2023

%Y A111008 equals the first entries and slightly differs, see a(35).

%Y Cf. A000367, A001067, A193267, A195989, A300330, A002445, A075180.

%K nonn

%O 1,5

%A _Bernd C. Kellner_, Mar 11 2018