login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n into squarefree parts that do not divide n.
4

%I #11 Mar 16 2018 10:59:07

%S 1,0,0,0,0,2,0,5,2,5,2,27,2,67,12,16,28,366,4,848,28,182,153,4591,20,

%T 4172,554,2217,558,57695,6,134118,3834,14629,6972,97478,258,1684852,

%U 24467,120869,5308,9104710,189,21165023,124427,117017,297830,114373157,3394,126979537,72158,7655405

%N Number of compositions (ordered partitions) of n into squarefree parts that do not divide n.

%H Alois P. Heinz, <a href="/A300706/b300706.txt">Table of n, a(n) for n = 0..2000</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%e a(18) = 4 because we have [13, 5], [11, 7], [7, 11] and [5, 13].

%p with(numtheory):

%p a:= proc(m) option remember; local b; b:= proc(n) option

%p remember; `if`(n=0, 1, add(`if`(not issqrfree(j) or

%p irem(m, j)=0, 0, b(n-j)), j=2..n)) end; b(m)

%p end:

%p seq(a(n), n=0..70); # _Alois P. Heinz_, Mar 11 2018

%t Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] != 0 && SquareFreeQ[k]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 51}]

%Y Cf. A005117, A280194, A284464, A300585, A300586, A300702, A300703, A300704.

%K nonn

%O 0,6

%A _Ilya Gutkovskiy_, Mar 11 2018