Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 17 2019 16:54:14
%S 120,840,1080,1320,1512,1560,1848,1890,1920,2040,2184,2280,2376,2688,
%T 2760,2856,3000,3192,3480,3720,4440,4920,5160,5640,5880,6360,7080,
%U 7320,7560,8040,8520,8760,9240,9480,9720,9960,10680,10920,11640,11880,12120,12360
%N Infinitary 3-abundant numbers: numbers n such that isigma(n) >= 3n, where isigma is the sum of infinitary divisors of n (A049417).
%C Analogous to 3-abundant numbers (A023197) with isigma (A049417) instead of sigma (A000203).
%H Amiram Eldar, <a href="/A300664/b300664.txt">Table of n, a(n) for n = 1..10000</a>
%e 840 is in the sequence since isigma(840) = 2880 > 3 * 840.
%t ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, #]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer ? Positive] := Module[{factors = First /@ FactorInteger[n], d = Divisors[n]}, d[[Flatten[ Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][#, Last[#]]] & /@ Transpose[ Last /@ ExponentList[#, factors] & /@ d]], _?(And @@ # &), {1}]]]]]; properinfinitarydivisorsum[k_] := Plus @@ InfinitaryDivisors[k] - k; Infinitary3AbundantNumberQ[k_] := If[properinfinitarydivisorsum[k] >= 2 k, True, False]; Select[Range[15000], Infinitary3AbundantNumberQ[#] &] (* after _Ant King_ at A129656 *)
%Y Cf. A007357, A023197, A049417, A129656, A129657.
%K nonn
%O 1,1
%A _Amiram Eldar_, Mar 10 2018