Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 25 2018 20:51:17
%S 1,-1,-1,-1,-1,-1,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,-1,-1,
%T -1,0,-1,-1,-1,-2,-1,-2,-1,-1,-1,-1,-1,-2,-1,-1,-1,0,-1,-1,-1,-1,-1,
%U -1,-1,-3,-1,-1,-1,-1,-1,-2,-1,-1,-1,-1,-1,-5,-1,-1,-1,-1,-1,-3,-1,-1,-1,-1,-1,0,-1,-1,-1,-1,-1,-2,-1,1,-1,-1,-1,-2,-1
%N a(n) = [x^n] Product_{d|n} (1 - x^d).
%H Antti Karttunen, <a href="/A300547/b300547.txt">Table of n, a(n) for n = 0..65537</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%t Table[SeriesCoefficient[Product[(1 - Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
%o (PARI) A300547(n) = { if(!n,return(1)); my(p=1); fordiv(n,d, p *= (1 - 'x^d)); polcoeff(p,n); }; \\ _Antti Karttunen_, Sep 25 2018
%Y Cf. A010815, A018818, A033630, A293814, A300548, A300549.
%K sign,look
%O 0,7
%A _Ilya Gutkovskiy_, Mar 08 2018