login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300465
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 4, 2, 4, 0, 0, 9, 8, 8, 9, 0, 0, 19, 22, 28, 22, 19, 0, 0, 41, 68, 142, 142, 68, 41, 0, 0, 88, 212, 540, 1146, 540, 212, 88, 0, 0, 189, 652, 2585, 7456, 7456, 2585, 652, 189, 0, 0, 406, 2017, 11343, 55663, 78195, 55663, 11343, 2017, 406, 0, 0
OFFSET
1,8
COMMENTS
Table starts
.0...0....0.....0.......0.........0..........0............0..............0
.0...1....2.....4.......9........19.........41...........88............189
.0...2....2.....8......22........68........212..........652...........2017
.0...4....8....28.....142.......540.......2585........11343..........51501
.0...9...22...142....1146......7456......55663.......400028........2906875
.0..19...68...540....7456.....78195.....935121.....10913850......127028268
.0..41..212..2585...55663....935121...17675111....330639367.....6123205255
.0..88..652.11343..400028..10913850..330639367...9829599051...293961266876
.0.189.2017.51501.2906875.127028268.6123205255.293961266876.14061129641181
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
k=3: [order 15]
k=4: [order 52] for n>54
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..1..1..0. .0..0..1..1. .0..1..1..0. .0..1..0..0
..1..1..1..1. .1..1..0..0. .1..1..0..0. .1..1..0..1. .1..1..1..1
..1..0..1..1. .1..0..0..1. .1..0..0..1. .1..0..1..1. .0..0..0..1
..0..0..1..1. .0..0..1..1. .1..1..1..1. .0..0..1..1. .0..0..1..1
CROSSREFS
Column 2 is A078039(n-2).
Sequence in context: A138270 A317643 A179011 * A300646 A300776 A301400
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 06 2018
STATUS
approved