login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300427
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 3, 1, 2, 10, 10, 2, 3, 30, 53, 30, 3, 5, 96, 272, 272, 96, 5, 8, 307, 1390, 2227, 1390, 307, 8, 13, 981, 7179, 18205, 18205, 7179, 981, 13, 21, 3137, 37042, 150352, 240196, 150352, 37042, 3137, 21, 34, 10034, 191135, 1240541, 3175101, 3175101
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1........2..........3............5..............8
..1.....3.....10.......30.........96..........307............981
..1....10.....53......272.......1390.........7179..........37042
..2....30....272.....2227......18205.......150352........1240541
..3....96...1390....18205.....240196......3175101.......41940055
..5...307...7179...150352....3175101.....67378450.....1429216222
..8...981..37042..1240541...41940055...1429216222....48707694395
.13..3137.191135.10232500..553858752..30305915964..1658695873019
.21.10034.986243.84410206.7314644478.642539662326.56476495490791
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6) for n>7
k=3: [order 13] for n>14
k=4: [order 47] for n>49
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..0..0. .0..1..0..0. .0..0..0..0. .0..1..0..0
..0..1..1..0. .0..1..0..0. .0..1..1..1. .1..0..1..1. .0..1..1..1
..0..0..1..1. .1..1..1..0. .0..0..0..1. .1..0..0..1. .1..0..0..0
..0..1..0..0. .0..0..1..1. .1..1..0..1. .1..1..0..0. .1..0..1..0
..0..1..1..0. .0..0..0..1. .1..0..1..1. .1..1..1..0. .1..1..1..1
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A055450 A185835 A301669 * A300689 A300612 A301354
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 05 2018
STATUS
approved