login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of enriched p-trees of weight n with distinct leaves.
7

%I #5 Mar 03 2018 22:52:00

%S 1,1,1,2,2,3,8,8,13,17,54,56,98,125,195,500,606,921,1317,1912,2635,

%T 6667,7704,12142,16958,24891,33388,47792,106494,126475,195475,268736,

%U 393179,523775,750251,979518,2090669,2457315,3759380,5066524,7420874,9726501,13935546

%N Number of enriched p-trees of weight n with distinct leaves.

%C An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

%F a(n) = Sum_{i=1..A000009(n)} A299203(A246867(n,i)).

%e The a(6) = 8 enriched p-trees with distinct leaves: 6, (42), (51), ((31)2), ((32)1), (3(21)), ((21)3), (321).

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t ept[q_]:=ept[q]=If[Length[q]===1,1,Total[Times@@@Map[ept,Join@@Function[sptn,Join@@@Tuples[Permutations/@GatherBy[sptn,Total]]]/@Select[sps[q],Length[#]>1&],{2}]]];

%t Table[Total[ept/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,30}]

%Y Cf. A000009, A000041, A063834, A196545, A246867, A273873, A281145, A289501, A290261, A294018, A296150, A299201, A299202, A299203, A300352, A300353, A300355.

%K nonn

%O 0,4

%A _Gus Wiseman_, Mar 03 2018