login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: [x^n] A( x/A(x)^(n+1) ) = 0 for n>1.
2

%I #6 Mar 11 2018 20:19:06

%S 1,1,3,26,390,8379,236243,8336968,357656013,18278776900,1095852254706,

%T 76105128228036,6057443479508005,547449104446315498,

%U 55722102673860207225,6341532269895314369024,801751668174625104196718,111957760296735373861748037,17178297525477106295505622856,2882568247205689424775588032950,526750240869807153027501303387666

%N G.f. A(x) satisfies: [x^n] A( x/A(x)^(n+1) ) = 0 for n>1.

%H Paul D. Hanna, <a href="/A300283/b300283.txt">Table of n, a(n) for n = 0..200</a>

%e G.f.: A(x) = 1 + x + 3*x^2 + 26*x^3 + 390*x^4 + 8379*x^5 + 236243*x^6 + 8336968*x^7 + 357656013*x^8 + 18278776900*x^9 + ...

%e The table of coefficients in A( x/A(x)^(n+1) ) begins:

%e n=1: [1, 1, 2, 18, 282, 6290, 182795, 6610758, 289336014, ...];

%e n=2: [1, 1, 1, 11, 190, 4517, 137296, 5133692, 230534949, ...];

%e n=3: [1, 1, 0, 5, 113, 3030, 98861, 3875903, 180074370, ...];

%e n=4: [1, 1, -1, 0, 50, 1800, 66661, 2810026, 136890273, ...];

%e n=5: [1, 1, -2, -4, 0, 799, 39922, 1911092, 100025915, ...];

%e n=6: [1, 1, -3, -7, -38, 0, 17924, 1156423, 68624835, ...];

%e n=7: [1, 1, -4, -9, -65, -623, 0, 525528, 41924078, ...];

%e n=8: [1, 1, -5, -10, -82, -1095, -14465, 0, 19247621, ...];

%e n=9: [1, 1, -6, -10, -90, -1440, -26035, -436586, 0, ...];

%e n=10: [1, 1, -7, -9, -90, -1681, -35224, -798774, -16339863, 0, ...]; ...

%e in which the main diagonal is all zeros after the initial terms.

%o (PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(#A)))[#A]); A[n+1]}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A266489, A300732, A300733.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 11 2018