Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 14 2018 03:50:29
%S 0,1,1,1,1,1,1,2,1,1,1,4,1,1,1,4,1,5,1,6,1,1,1,8,1,1,3,8,1,11,1,8,1,1,
%T 1,12,1,1,1,12,1,15,1,12,7,1,1,16,1,9,1,14,1,15,1,16,1,1,1,22,1,1,9,
%U 16,1,23,1,18,1,17,1,24,1,1,9,20,1,27,1,24,9,1,1,30,1,1,1,24,1,29,1,24,1,1,1,32,1,13,13,30,1,35,1,28,17
%N Difference between A032742 (the largest proper divisor of n) and its Möbius transform (A300236).
%H Antti Karttunen, <a href="/A300239/b300239.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = A032742(n) - A300236(n).
%F a(n) = -Sum_{d|n, d<n} A008683(n/d)*A032742(d).
%t Table[n/FactorInteger[n][[1, 1]] - DivisorSum[n, # MoebiusMu[n/#]/FactorInteger[#][[1, 1]] &], {n, 105}] (* or *)
%t Fold[Function[{a, n}, Append[a, {Abs@ Total@ Map[MoebiusMu[n/#] a[[#, -1]] &, Most@ Divisors@ n], n/FactorInteger[n][[1, 1]]}]], {{0, 1}}, Range[2, 105]][[All, 1]] (* _Michael De Vlieger_, Mar 10 2018 *)
%o (PARI)
%o A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A300239(n) = -sumdiv(n,d,(d<n)*moebius(n/d)*A032742(d));
%Y Cf. A008683, A032742, A300236.
%K nonn
%O 1,8
%A _Antti Karttunen_, Mar 10 2018