login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of non-constant terms of a Calabi-Yau modular form attached to 4-dimensional Dwork family.
9

%I #15 Mar 27 2018 17:09:32

%S -1,1944,10066356,139857401664,2615615263199250,57453864811412558112,

%T 1396383637688295560244360,36387737129455500217143965184,

%U 997805935308219028231096155360699,28447809694713927701484542997198258000

%N Coefficients of non-constant terms of a Calabi-Yau modular form attached to 4-dimensional Dwork family.

%C The 8-tuple (1/36 + 20*A300194, -1 + 216*A300195, -1/36 + 14*A300196, -1/6 + 24*A300197, -1/72 + 2*A300198, -1/46656 * A300199, 1/36 - 2*A300200, -1/7776 + 7/18 * A300201) gives a solution of the modular vector field R = Sum_{i=1..8} R_i d/dt_i on the enhanced moduli space arising from 4-dimensional Dwork family, where d/dt_i's give the standard basis of the tangent space in the chart (t_1,t_2,...,t_8) and

%C R_1 = -t_1*t_2+t_3;

%C R_2 = (-t_1^6*t_2^2+1/36*t_3^2*t_4*t_8+t_2^2*t_6)/(t_1^6-t_6);

%C R_3 = (-3*t_1^6*t_2*t_3+1/36*t_3^2*t_5*t_8+3*t_2*t_3*t_6)/(t_1^6-t_6);

%C R_4 = (-t_1^6*t_2*t_4-1/36*t_3^2*t_7*t_8+t_2*t_4*t_6)/(t_1^6-t_6);

%C R_5 = (-2*t_1^6*t_3*t_4-4*t_1^6*t_2*t_5+5*t_1^4*t_3*t_8+1/36*t_3*t_5^2*t_8+ 2*t_3*t_4*t_6+4*t_2*t_5*t_6)/(2*(t_1^6-t_6));

%C R_6 = -6*t_2*t_6;

%C R_7 = -18*t_1^2+1/2*t_4^2;

%C R_8 = (-3*t_1^6*t_2*t_8+3*t_1^5*t_3*t_8+3*t_2*t_6*t_8)/(t_1^6-t_6);

%C For more details see the Movasati & Nikdelan link Section 8.3.

%H H. Movasati, Y. Nikdelan, <a href="http://arxiv.org/abs/1603.09411">Gauss-Manin Connection in Disguise: Dwork Family</a>, arXiv:1603.09411 [math.AG], 2016-2017. See Table 2, (-6^6)*t_6.

%H H. Movasati, <a href="http://w3.impa.br/~hossein/foliation-allversions/foliation.lib">Foliation.lib</a>.

%o (SINGULAR)

%o // This program has to be compiled in SINGULAR. By changing "int iter" you can

%o // calculate more coefficients. Note that this program is using a library calling

%o // "foliation.lib" written by H. Movasati, which is available in the link given in

%o // LINKS section as Foliation.lib.

%o LIB "linalg.lib"; LIB "foliation.lib";

%o ring r=0, (t_1,t_2,t_3,t_4,t_5,t_6,t_7,t_8,q),dp;

%o int pm=1;number t10=1/36;number ko=1/216;number c4=ko^2;number t20=-1;number t81=49/18;number a=-6*t20;

%o poly dis=t_1^6-t_6;

%o poly dt1=dis*(-t_1*t_2+t_3);

%o poly dt2=(1296*c4*t_3^2*t_4*t_8-t_1^6*t_2^2+t_2^2*t_6);

%o poly dt3=(1296*c4*t_3^2*t_5*t_8-3*t_1^6*t_2*t_3+3*t_2*t_3*t_6);

%o poly dt4=(-1296*c4*t_3^2*t_7*t_8-t_1^6*t_2*t_4+t_2*t_4*t_6);

%o poly dt5=(1296*c4*t_3*t_5^2*t_8-4*t_1^6*t_2*t_5-2*t_1^6*t_3*t_4+5*t_1^4*t_3*t_8+4*t_2*t_5*t_6+2*t_3*t_4*t_6)/(2);

%o poly dt6=dis*(-6*t_2*t_6);

%o poly dt7=dis*((1296*c4*t_4^2-t_1^2)/(2592*c4));

%o poly dt8=(-3*t_1^6*t_2*t_8+3*t_1^5*t_3*t_8+3*t_2*t_6*t_8);

%o list pose;

%o pose=(60*ko)/(49*t10^2)*t81*q+(t10),(-162*t20*ko)/(49*t10^3)*t81*q+(t20),(-66*t20*ko)/(7*t10^2)*t81*q+(t10*t20),16/(147*t10^2)*t81*q+(-t10)/(36*ko),45/(49*t10)*t81*q+(-t10^2)/(12*ko),(3888*t10^3*ko)/49*t81*q,1/(1512*t10*t20*ko)*t81*q+(-t10^2)/(1296*t20*ko^2),t81*q+(-t10^3)/(36*ko);

%o list vecfield=dt1,dt2,dt3,dt4,dt5,dt6,dt7,dt8;

%o list denomv=dis,dis,dis,dis,dis,dis,dis,dis;

%o intvec upto=1,1,1,1,1,1,1,1;intvec whichpow;

%o int iter=20;

%o int n;

%o for (n=2; n<=iter;n=n+1){upto=n,n,n,n,n,n,n,n; whichpow=upto;pose=qexpansion(vecfield,denomv,pose,upto,upto,a); n;}

%o -6^6*pose[6];

%Y Cf. A300194, A300195, A300196, A300197, A300198, A300200, A300201.

%K sign

%O 1,2

%A _Younes Nikdelan_, Mar 22 2018