%I #4 Feb 27 2018 12:29:46
%S 8,128,2033,32321,513832,8168705,129863167,2064518282,32820974441,
%T 521776133213,8295010668576,131871117920269,2096439948834819,
%U 33328453784142714,529843858517908445,8423268484861943881
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A300182.
%H R. H. Hardin, <a href="/A300178/b300178.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 14*a(n-1) +27*a(n-2) +51*a(n-3) -10*a(n-4) -a(n-5) -10*a(n-6)
%e Some solutions for n=5
%e ..0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..1
%e ..0..1..1..1. .0..1..0..0. .0..0..1..1. .1..0..0..0. .0..1..1..1
%e ..1..0..1..1. .0..1..1..0. .0..0..0..1. .0..0..0..0. .0..1..0..0
%e ..1..0..1..1. .0..1..1..1. .1..0..1..0. .0..0..1..0. .0..0..0..0
%e ..1..1..0..1. .1..1..1..1. .1..1..1..0. .0..1..1..1. .1..1..0..0
%Y Cf. A300182.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 27 2018