Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 29 2018 18:18:30
%S 4,32,255,2033,16208,129217,1030173,8212978,65477359,522013397,
%T 4161713160,33178950053,264516722873,2108839989442,16812570686523,
%U 134036975068993,1068599860225264,8519333271178937,67919753770243365
%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 3 of A300182.
%H R. H. Hardin, <a href="/A300177/b300177.txt">Table of n, a(n) for n = 1..210</a>
%H Simon Plouffe, <a href="http://vixra.org/abs/1409.0048"> Conjectures of the OEIS, as of June 20, 2018.</a>
%F Empirical: a(n) = 7*a(n-1) +7*a(n-2) +6*a(n-3).
%F Empirical g.f.: -x*(-3*x^2-4*x-4)/(-6*x^3-7*x^2-7*x+1). - _Simon Plouffe_, Jun 21 2018
%e Some solutions for n=5
%e ..0..1..1. .0..1..1. .0..0..0. .0..1..1. .0..1..0. .0..0..1. .0..0..1
%e ..1..1..0. .0..0..1. .0..1..1. .1..1..0. .0..1..1. .0..0..1. .1..1..0
%e ..1..1..1. .0..0..0. .0..1..0. .0..0..0. .1..0..0. .1..1..0. .0..1..0
%e ..0..0..1. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .0..0..1. .0..1..1
%e ..1..0..0. .0..1..1. .1..1..0. .0..0..1. .1..0..1. .0..0..0. .0..0..0
%Y Cf. A300182.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 27 2018