%I #4 Feb 27 2018 12:16:34
%S 0,6,37,268,2620,23522,223445,2117743,20154626,192105610,1831726755,
%T 17471097262,166653939139,1589761562086,15165501199167,
%U 144672176026087,1380113732256295,13165743488534979,125596111620967559
%N Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A300175.
%H R. H. Hardin, <a href="/A300171/b300171.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) +27*a(n-2) -166*a(n-3) -548*a(n-4) +941*a(n-5) +4154*a(n-6) -129*a(n-7) -9373*a(n-8) -6012*a(n-9) -2163*a(n-10) -462*a(n-11) +4609*a(n-12) +11124*a(n-13) +1499*a(n-14) +2175*a(n-15) -5904*a(n-16) +1481*a(n-17) -561*a(n-18) -5302*a(n-19) +2380*a(n-20) +1091*a(n-21) +890*a(n-22) -2400*a(n-23) +1432*a(n-24) -280*a(n-25) for n>26
%e Some solutions for n=5
%e ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..1..1
%e ..0..1..1..0. .1..0..0..1. .0..0..1..0. .0..0..0..0. .0..0..1..1
%e ..0..0..1..0. .1..1..1..1. .1..1..1..1. .1..1..1..0. .1..1..0..0
%e ..0..1..0..0. .1..0..0..1. .0..1..0..1. .1..0..0..1. .0..1..1..0
%e ..1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..1..1
%Y Cf. A300175.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 27 2018