login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of (E_4^3/E_6^2)^(1/8).
19

%I #19 Mar 04 2018 12:36:58

%S 1,216,49248,21609504,9000122112,4129083886032,1919370450227328,

%T 917374442680570176,444151666318727522304,217813424092164713883960,

%U 107771776495186976967396672,53736084111333058216805911392,26958647064591216695092188902400

%N Coefficients in expansion of (E_4^3/E_6^2)^(1/8).

%H Seiichi Manyama, <a href="/A299994/b299994.txt">Table of n, a(n) for n = 0..367</a>

%F Convolution inverse of A299859.

%F a(n) ~ 2 * Pi^(3/4) * exp(2*Pi*n) / (3^(1/8) * Gamma(1/4)^2 * n^(3/4)). - _Vaclav Kotesovec_, Mar 04 2018

%F a(n) * A299859(n) ~ -exp(4*Pi*n) / (4*sqrt(2)*Pi*n^2). - _Vaclav Kotesovec_, Mar 04 2018

%t terms = 13;

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];

%t (E4[x]^3/E6[x]^2)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 28 2018 *)

%Y (E_4^3/E_6^2)^(k/288): A289365 (k=1), A299694 (k=2), A299696 (k=3), A299697 (k=4), A299698 (k=6), A299943 (k=8), A299949 (k=9), A289369 (k=12), A299950 (k=16), A299951 (k=18), A299953 (k=24), A299993 (k=32), this sequence (k=36), A300052 (k=48), A300053 (k=72), A300054 (k=96), A300055 (k=144), A289209 (k=288).

%Y Cf. A004009 (E_4), A013973 (E_6), A299859.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Feb 22 2018