The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299915 a(n) = A299914(2n). 4
 0, 1, 9, 69, 513, 3789, 27945, 206037, 1518993, 11198493, 82558521, 608644773, 4487100705, 33080169069, 243876313161, 1797924789621, 13254807348657, 97718168662461, 720405829778265, 5311034444054853, 39154440039154497, 288657547023732237, 2128064642743736169 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (9,-12) FORMULA G.f.: x/(12*x^2-9*x+1). - Alois P. Heinz, Mar 10 2018 From Colin Barker, Mar 12 2018: (Start) a(n) = (-((9-sqrt(33))/2)^n + ((9+sqrt(33))/2)^n) / sqrt(33). a(n) = 9*a(n-1) - 12*a(n-2) for n>1. (End) E.g.f.: 2*exp(9*x/2)*sinh(sqrt(33)*x/2)/sqrt(33). - Stefano Spezia, Dec 24 2021 MAPLE a:= n-> (<<0|1>, <-12|9>>^n)[1, 2]: seq(a(n), n=0..25); # Alois P. Heinz, Mar 10 2018 MATHEMATICA CoefficientList[Series[x/(12 x^2 - 9 x + 1), {x, 0, 21}], x] (* Michael De Vlieger, Mar 10 2018 *) LinearRecurrence[{9, -12}, {0, 1}, 30] (* Vincenzo Librandi, Mar 11 2018 *) PROG (Magma) I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1)-12*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 11 2018 (PARI) concat(0, Vec(x / (12*x^2-9*x+1) + O(x^30))) \\ Colin Barker, Mar 12 2018 CROSSREFS Cf. A299914. Sequence in context: A075045 A361139 A081616 * A287818 A297222 A126530 Adjacent sequences: A299912 A299913 A299914 * A299916 A299917 A299918 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 10 2018 EXTENSIONS More terms from Altug Alkan, Mar 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 18:15 EDT 2023. Contains 365828 sequences. (Running on oeis4.)