login
A299905
Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices of decomposition order 2.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 50, 108, 50, 0, 0, 0, 0, 180, 660, 660, 180, 0, 0, 0, 0, 602, 3420, 5714, 3420, 602, 0, 0, 0, 0, 1932, 16212, 40860, 40860, 16212, 1932, 0, 0, 0, 0, 6050, 72828, 262010, 391500, 262010, 72828, 6050, 0, 0
OFFSET
0,13
LINKS
Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017. Also Discrete Math., 341 (2018), 341-349.
EXAMPLE
Array begins:
0,0,0,0,0,0,...,
0,0,0,0,0,0,...,
0,0,2,12,50,180,...,
0,0,12,108,660,3420,...,
0,0,50,660,5714,40860,...,
0,0,180,3420,40860,39150,...,
...
MATHEMATICA
T[n_, k_] := Sum[(1/2)*(j - 1 )*j!^2*StirlingS2[k + 1, j + 1]*StirlingS2[n + 1, j + 1], {j, 2, Min[k, n]}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)
CROSSREFS
Sequence in context: A184366 A230614 A230730 * A225783 A135468 A003196
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 23 2018
EXTENSIONS
More terms from Jean-François Alcover, Feb 24 2018
STATUS
approved