%I #4 Feb 20 2018 08:12:34
%S 2,64,1000,13850,198202,2853873,41026724,589665345,8475712818,
%T 121828795509,1751145754781,25170657077961,361798588649774,
%U 5200429172871619,74750052326542025,1074444076986377568
%N Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299839.
%H R. H. Hardin, <a href="/A299835/b299835.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 14*a(n-1) +a(n-2) +68*a(n-3) -24*a(n-4) -702*a(n-5) -151*a(n-6) -1080*a(n-7) +2180*a(n-8) +6939*a(n-9) -2653*a(n-10) -6639*a(n-11) -3139*a(n-12) -3348*a(n-13) +8687*a(n-14) +5803*a(n-15) -5001*a(n-16) -1532*a(n-17) +484*a(n-18) -180*a(n-19) +281*a(n-20) -17*a(n-21) -6*a(n-22) for n>23
%e Some solutions for n=5
%e ..0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..1
%e ..0..1..1..0. .0..1..0..1. .0..0..1..1. .1..0..0..1. .0..0..0..1
%e ..0..0..1..1. .0..1..1..0. .0..0..0..0. .1..0..0..0. .1..0..1..1
%e ..1..0..1..0. .0..1..0..0. .1..0..0..0. .0..1..1..0. .1..1..1..0
%e ..1..0..0..1. .1..1..1..0. .1..1..1..0. .1..0..1..1. .1..1..0..0
%Y Cf. A299839.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 20 2018
|