login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x.
9

%I #27 Apr 06 2024 15:00:04

%S 19,97,33751

%N Prime numbers represented in more than one way by cyclotomic binary forms f(x,y) with x and y prime numbers and y < x.

%C A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x,y) = n has an integer solution.

%C There are only three prime numbers below 600000 which satisfy the given conditions. No prime number below 600000 exists which has more than one representation if we require a representation by odd prime numbers y < x.

%H Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017.

%e 33751 = f(131,79) for f(x,y) = x^2 + x*y + y^2.

%e 33751 = f( 13, 2) for f(x,y) = x^4+x^3*y+x^2*y^2+x*y^3+y^4.

%o (PARI)

%o A299733(upto) =

%o {

%o my(K, M, phi, multi);

%o forprime(n = 2, upto, multi = 0;

%o K = floor(5.383*log(n)^1.161);

%o M = floor(2*sqrt(n/3));

%o for(k = 3, K,

%o phi = eulerphi(k);

%o forprime(y = 2, M,

%o forprime(x = y + 1, M,

%o if(n == y^phi*polcyclo(k, x/y),

%o multi += 1

%o )

%o )

%o )

%o );

%o if(multi > 1, print(n," has multiple reps!"))

%o )

%o }

%o A299733(100000)

%o (Julia) using Nemo

%o function isA299733(n)

%o if n < 3 || !isprime(ZZ(n)) return false end

%o R, x = PolynomialRing(ZZ, "x")

%o K = floor(Int, 5.383*log(n)^1.161) # Bounds from

%o M = floor(Int, 2*sqrt(n/3)) # Fouvry & Levesque & Waldschmidt

%o N = QQ(n); multi = 0

%o for k in 3:K

%o e = Int(eulerphi(ZZ(k)))

%o c = cyclotomic(k, x)

%o for m in 2:M if isprime(ZZ(m))

%o for j in m:M if isprime(ZZ(j))

%o if N == m^e*subst(c, QQ(j,m)) multi += 1

%o end end end end end end

%o multi > 1

%o end # _Peter Luschny_, May 16 2019

%Y Subsequence of A299929.

%Y Cf. A293654, A296095, A299214, A299498, A299928, A299930, A299956, A299964.

%K nonn,bref,more,hard

%O 1,1

%A _Peter Luschny_, Feb 21 2018