login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 16 2018 07:23:28

%S 8,88,372,2009,12076,69614,398314,2305246,13349305,77225419,446916111,

%T 2587221606,14977823434,86710581094,502009221965,2906422822781,

%U 16827090550319,97423052002120,564048011413868,3265662577740412

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299675.

%H R. H. Hardin, <a href="/A299671/b299671.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299671/a299671.txt">Empirical recurrence of order 65</a>

%F Empirical recurrence of order 65 (see link above)

%e Some solutions for n=5

%e ..0..1..1..0. .0..1..0..0. .0..0..0..0. .0..0..1..1. .0..1..0..0

%e ..0..0..0..1. .0..0..1..1. .0..0..0..0. .1..0..1..1. .1..1..0..0

%e ..1..0..0..0. .1..1..1..1. .1..1..0..0. .1..1..1..1. .1..0..0..0

%e ..0..0..0..1. .0..1..1..1. .1..0..1..1. .0..1..1..1. .0..0..0..0

%e ..1..1..0..1. .0..1..0..0. .0..1..0..0. .1..0..0..0. .0..1..1..1

%Y Cf. A299675.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 16 2018