%I #4 Feb 15 2018 14:41:35
%S 32,2048,116654,6856789,401989538,23582064542,1383316377321,
%T 81146123707386,4760069868306954,279228031443069248,
%U 16379652618721023225,960838424607723816457,56363251335370746218101,3306295856088555646566574
%N Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 6 of A299654.
%H R. H. Hardin, <a href="/A299652/b299652.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A299652/a299652.txt">Empirical recurrence of order 89</a>
%F Empirical recurrence of order 89 (see link above)
%e Some solutions for n=5
%e ..0..0..0..1..0..0. .0..0..1..0..1..0. .0..0..0..1..0..1. .0..0..0..1..0..1
%e ..0..0..1..0..1..0. .0..0..1..0..0..1. .0..0..1..0..1..1. .0..0..1..0..1..1
%e ..0..0..1..1..0..0. .0..0..1..0..1..0. .0..0..1..0..0..1. .0..0..1..0..0..0
%e ..0..0..1..1..1..1. .0..0..0..1..1..0. .0..0..0..1..0..1. .0..0..0..0..1..1
%e ..0..0..0..0..0..1. .0..0..1..0..1..0. .0..0..1..1..1..0. .0..0..1..1..0..0
%Y Cf. A299654.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 15 2018
|