login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299581
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 2, 1, 1, 5, 10, 10, 5, 1, 1, 9, 27, 19, 27, 9, 1, 1, 22, 63, 43, 43, 63, 22, 1, 1, 45, 115, 126, 172, 126, 115, 45, 1, 1, 101, 267, 327, 616, 616, 327, 267, 101, 1, 1, 218, 569, 860, 1734, 2597, 1734, 860, 569, 218, 1, 1, 477, 1193, 2401
OFFSET
1,12
COMMENTS
Table starts
.1...1...1....1.....1......1.......1........1..........1...........1
.1...1...1....2.....5......9......22.......45........101.........218
.1...1..10...10....27.....63.....115......267........569........1193
.1...2..10...19....43....126.....327......860.......2401........6733
.1...5..27...43...172....616....1734.....6188......22944.......81842
.1...9..63..126...616...2597...10646....56122.....291690.....1619418
.1..22.115..327..1734..10646...61273...464681....3999592....35862058
.1..45.267..860..6188..56122..464681..6245870...83493860..1154724040
.1.101.569.2401.22944.291690.3999592.83493860.1821672943.40042035336
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -2*a(n-4) for n>5
k=3: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -4*a(n-4) -2*a(n-5) -2*a(n-6) +a(n-9) for n>13
k=4: [order 34]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..1..1..0. .0..0..0..0. .0..1..1..1
..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1
..0..0..0..0. .1..0..1..0. .1..1..1..1. .0..0..0..0. .1..1..1..0
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..1..1..1
CROSSREFS
Column 2 is A052962(n-2).
Sequence in context: A100078 A051242 A234934 * A069287 A215749 A102775
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 13 2018
STATUS
approved