login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299514
T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 29, 29, 23, 5, 8, 49, 63, 112, 63, 49, 8, 13, 99, 167, 439, 439, 167, 99, 13, 21, 189, 477, 1950, 2336, 1950, 477, 189, 21, 34, 383, 1233, 7702, 13836, 13836, 7702, 1233, 383, 34, 55, 777, 3265, 30277, 84449, 122197
OFFSET
1,5
COMMENTS
Table starts
..0...1....1......2.......3........5..........8..........13............21
..1...3....7.....13......23.......49.........99.........189...........383
..1...7...15.....29......63......167........477........1233..........3265
..2..13...29....112.....439.....1950.......7702.......30277........126429
..3..23...63....439....2336....13836......84449......477162.......2791607
..5..49..167...1950...13836...122197....1190886....10305454......92938855
..8..99..477...7702...84449..1190886...17345466...225351737....3159884395
.13.189.1233..30277..477162.10305454..225351737..4446967161...94825218644
.21.383.3265.126429.2791607.92938855.3159884395.94825218644.3109567007082
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -4*a(n-4) for n>5
k=3: [order 15] for n>17
k=4: [order 68] for n>70
EXAMPLE
Some solutions for n=5, k=4
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..0..0..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..0. .1..1..1..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..0. .0..1..1..1
..0..0..0..1. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..1..1
..0..1..1..0. .0..1..1..1. .0..1..1..0. .1..1..1..0. .1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297953.
Sequence in context: A298582 A299574 A298396 * A299314 A300115 A100888
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 11 2018
STATUS
approved