login
Number of nX3 0..1 arrays with every element equal to 1, 2, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 11 2018 06:05:58

%S 1,7,15,29,63,167,477,1233,3265,8727,23041,61427,163443,434073,

%T 1154961,3071109,8165955,21718237,57753279,153583907,408435961,

%U 1086155913,2888454053,7681365667,20427272161,54322941315,144462750163,384174434645

%N Number of nX3 0..1 arrays with every element equal to 1, 2, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

%C Column 3 of A299514.

%H R. H. Hardin, <a href="/A299509/b299509.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) -7*a(n-2) +4*a(n-3) -12*a(n-4) +25*a(n-5) -22*a(n-6) +8*a(n-7) +9*a(n-8) -7*a(n-9) +13*a(n-10) -50*a(n-11) +64*a(n-12) -39*a(n-13) +10*a(n-15) for n>17

%e Some solutions for n=9

%e ..0..1..0. .0..1..0. .0..0..1. .0..1..0. .0..1..0. .0..1..0. .0..1..1

%e ..1..0..1. .1..0..1. .1..1..0. .0..1..0. .1..0..1. .0..1..0. .0..1..0

%e ..0..1..0. .0..0..0. .1..0..1. .0..1..0. .0..1..0. .1..1..1. .1..0..1

%e ..1..1..1. .0..0..0. .0..0..0. .1..1..1. .1..0..1. .1..1..1. .0..0..0

%e ..1..1..1. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .1..1..1. .0..0..0

%e ..1..1..1. .1..0..1. .0..0..0. .1..1..1. .0..0..0. .0..1..0. .0..0..0

%e ..1..1..1. .1..0..1. .0..0..0. .1..1..1. .0..0..0. .1..0..0. .0..0..0

%e ..0..1..0. .1..0..1. .1..0..1. .0..1..0. .1..0..1. .0..0..0. .1..0..1

%e ..0..1..0. .1..0..1. .1..0..1. .1..0..1. .0..1..0. .1..1..0. .1..0..1

%Y Cf. A299514.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 11 2018