Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 02 2018 15:36:13
%S 5,31,80,121,211,341,405,496,781,1031,1280,1441,1555,1936,2101,2511,
%T 2801,3125,3355,3376,4141,4651,4681,5261,5456,6480,6505,6841,7381,
%U 7936,8431,9031,9801,9881,11111,11605,12005,12496,13981,14251,15961,16105,16496,17091,17891
%N Numbers of the form x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, where x and y are positive integers.
%o (Julia)
%o function isA299505(n)
%o n % 5 >= 2 && return false
%o n == 5 && return true
%o K = Int(floor(5.383*log(n)^1.161))
%o M = Int(floor(2*sqrt(n/3)))
%o for k in 3:K
%o for y in 2:M, x in 1:y
%o n == x^4+y*x^3+y^2*x^2+y^3*x+y^4 && return true
%o end end
%o return false
%o end
%o A299505list(upto) = [n for n in 1:upto if isA299505(n)]
%o println(A299505list(18000))
%Y Cf. A024614, A002649 (subsequence of primes).
%K nonn
%O 1,1
%A _Peter Luschny_, Mar 02 2018