%I #4 Feb 07 2018 09:49:08
%S 4,26,93,357,1399,5513,21642,85000,333982,1312528,5157620,20267541,
%T 79645105,312982976,1229932727,4833285319,18993441447,74638863658,
%U 293309650948,1152624126059,4529487480525,17799607536492,69947434367408
%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
%C Column 3 of A299345.
%H R. H. Hardin, <a href="/A299340/b299340.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) -9*a(n-2) +3*a(n-3) +7*a(n-4) -34*a(n-5) +62*a(n-6) -54*a(n-7) +39*a(n-8) -89*a(n-9) +52*a(n-10) +47*a(n-11) +21*a(n-12) -33*a(n-13) -32*a(n-14) +16*a(n-15) +12*a(n-16) for n>18
%e Some solutions for n=7
%e ..0..1..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0
%e ..1..1..1. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .0..0..0. .0..0..0
%e ..0..0..0. .1..1..1. .0..0..0. .1..1..1. .0..0..0. .0..0..0. .0..0..0
%e ..0..0..0. .1..1..1. .1..1..1. .1..1..1. .0..0..0. .1..1..1. .1..1..1
%e ..0..0..0. .1..1..1. .0..0..0. .1..1..1. .1..1..1. .0..0..0. .0..0..1
%e ..1..1..1. .0..0..0. .1..1..0. .1..1..1. .1..1..1. .1..0..1. .0..1..0
%e ..1..0..0. .1..1..0. .1..1..0. .1..1..1. .0..0..0. .1..0..0. .1..0..1
%Y Cf. A299345.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 07 2018