login
A299334
T(n,k) = Number of n X k 0..1 arrays with every element equal to 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 8, 6, 0, 0, 17, 36, 36, 17, 0, 0, 41, 173, 263, 173, 41, 0, 0, 104, 858, 2537, 2537, 858, 104, 0, 0, 261, 4258, 22718, 46286, 22718, 4258, 261, 0, 0, 655, 21386, 214683, 816886, 816886, 214683, 21386, 655, 0, 0, 1646, 107465, 2024559
OFFSET
1,8
COMMENTS
Table starts
.0...0.....0.......0.........0...........0.............0...............0
.0...1.....3.......6........17..........41...........104.............261
.0...3.....8......36.......173.........858..........4258...........21386
.0...6....36.....263......2537.......22718........214683.........2024559
.0..17...173....2537.....46286......816886......14783424.......267652693
.0..41...858...22718....816886....27685946.....967671172.....33782479865
.0.104..4258..214683..14783424...967671172...65181402152...4383565657986
.0.261.21386.2024559.267652693.33782479865.4383565657986.567774280392040
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1);
k=2: a(n) = a(n-1) +3*a(n-2) +2*a(n-3);
k=3: [order 12] for n > 14;
k=4: [order 27] for n > 28;
k=5: [order 76] for n > 79.
EXAMPLE
Some solutions for n=5, k=4
..0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0
..1..0..1..1. .1..0..1..1. .0..1..1..0. .0..0..1..0. .0..0..0..0
..1..1..0..0. .1..1..1..1. .0..1..0..1. .1..0..0..0. .1..1..1..0
..1..0..1..0. .1..0..0..1. .1..0..1..1. .1..1..0..0. .0..1..0..1
..0..0..1..1. .0..0..1..1. .1..1..1..1. .1..0..0..0. .0..0..1..1
CROSSREFS
Column 2 is A297972.
Sequence in context: A297978 A298629 A298461 * A268759 A298841 A299602
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 07 2018
STATUS
approved