%I #10 Feb 14 2018 06:12:56
%S 1,6,20,49,105,190,320,501,727,1026,1408,1853,2391,3026,3734,4579,
%T 5541,6620,7838,9201,10657,12328,14136,16123,18293,20658,23128,25905,
%U 28825,31994,35388,39029,42779,46942,51240,55865,60755,65946,71242,77071,83013,89368,96026
%N Partial sums of A299291.
%C First 80 terms computed by _Davide M. Proserpio_ using ToposPro.
%H Colin Barker, <a href="/A299292/b299292.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1,2,0,-2,-2,0,2,-1,0,1,1,0,-1).
%F G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2).
%F a(n) = a(n-2) + a(n-3) - a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) - a(n-12) + a(n-14) + a(n-15) - a(n-17) for n>17. - _Colin Barker_, Feb 14 2018
%o (PARI) Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ _Colin Barker_, Feb 14 2018
%Y Cf. A299291.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 10 2018