login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A299283.
51

%I #12 Mar 30 2024 16:17:09

%S 1,8,30,78,162,292,478,731,1061,1478,1992,2614,3354,4222,5228,6383,

%T 7697,9180,10842,12694,14746,17008,19490,22203,25157,28362,31828,

%U 35566,39586,43898,48512,53439,58689,64272,70198,76478,83122,90140,97542,105339,113541

%N Partial sums of A299283.

%H Colin Barker, <a href="/A299284/b299284.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,1,-3,3,-1).

%F From _Colin Barker_, Feb 11 2018: (Start)

%F G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.

%F (End)

%t LinearRecurrence[{3,-3,1,1,-3,3,-1},{1,8,30,78,162,292,478},50] (* _Harvey P. Dale_, Mar 30 2024 *)

%o (PARI) Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 11 2018

%Y Cf. A299283.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 10 2018