%I #23 Jun 06 2024 14:20:58
%S 1,7,22,48,84,130,186,253,330,417,514,622,740,868,1006,1155,1314,1483,
%T 1662,1852,2052,2262,2482,2713,2954,3205,3466,3738,4020,4312,4614,
%U 4927,5250,5583,5926,6280,6644,7018,7402,7797,8202,8617,9042,9478,9924,10380
%N Coordination sequence for "svh" 3D uniform tiling.
%C First 20 terms computed by _Davide M. Proserpio_ using ToposPro.
%D B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #15.
%H Colin Barker, <a href="/A299283/b299283.txt">Table of n, a(n) for n = 0..1000</a>
%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/svh">The svh tiling (or net)</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F G.f.: (x^6+5*x^5+9*x^4+11*x^3+9*x^2+5*x+1)/((x+1)*(x^2+1)*(1-x)^3).
%F a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. - _Colin Barker_, Feb 11 2018
%F a(n) = (29 - (-1)^n + 82*n^2 + 4*A056594(n))/16 for n > 0. - _Stefano Spezia_, Jun 06 2024
%t LinearRecurrence[{2,-1,0,1,-2,1},{1,7,22,48,84,130,186},50] (* _Harvey P. Dale_, May 19 2019 *)
%o (PARI) Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)) + O(x^60)) \\ _Colin Barker_, Feb 11 2018
%Y See A299284 for partial sums.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 10 2018