login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coordination sequence for "reo" 3D uniform tiling.
51

%I #21 Jan 16 2025 06:56:01

%S 1,8,30,68,126,180,286,348,510,572,798,852,1150,1188,1566,1580,2046,

%T 2028,2590,2532,3198,3092,3870,3708,4606,4380,5406,5108,6270,5892,

%U 7198,6732,8190,7628,9246,8580,10366,9588,11550,10652,12798,11772,14110,12948,15486,14180

%N Coordination sequence for "reo" 3D uniform tiling.

%C First 20 terms computed by _Davide M. Proserpio_ using ToposPro.

%D B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #7.

%H Colin Barker, <a href="/A299279/b299279.txt">Table of n, a(n) for n = 0..1000</a>

%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/reo">The reo tiling (or net)</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).

%F G.f.: (4*x^7 - 3*x^6 + 39*x^4 + 44*x^3 + 27*x^2 + 8*x + 1) / (1 - x^2)^3.

%F From _Colin Barker_, Feb 11 2018: (Start)

%F a(n) = 8*n^2 - 2 for even n > 1.

%F a(n) = 7*n^2 + 5 for odd n > 1.

%F a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>7. (End)

%F E.g.f.: 3 - 4*x + (8*x^2 + 7*x - 2)*cosh(x) + (7*x^2 + 8*x + 5)*sinh(x). - _Stefano Spezia_, Jun 06 2024

%t LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 8, 30, 68, 126, 180, 286, 348}, 50] (* _Paolo Xausa_, Jan 16 2025 *)

%o (PARI) Vec((1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ _Colin Barker_, Feb 11 2018

%Y See A299280 for partial sums.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy,changed

%O 0,2

%A _N. J. A. Sloane_, Feb 10 2018