Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 12 2021 11:07:33
%S 1,6,18,40,76,132,214,325,469,652,878,1150,1474,1856,2298,2803,3379,
%T 4032,4762,5572,6472,7468,8558,9745,11041,12452,13974,15610,17374,
%U 19272,21298,23455,25759,28216,30818,33568,36484,39572,42822,46237,49837,53628,57598
%N Partial sums of A299257.
%H Colin Barker, <a href="/A299263/b299263.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (4,-8,12,-14,12,-8,4,-1).
%F From _Colin Barker_, Feb 09 2018: (Start)
%F G.f.: (1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^4*(1 + x^2)^2).
%F a(n) = 4*a(n-1) - 8*a(n-2) + 12*a(n-3) - 14*a(n-4) + 12*a(n-5) - 8*a(n-6) + 4*a(n-7) - a(n-8) for n>8.
%F (End)
%F 5*a(n) = 2*(2*n+1)*(2*n^2+2*n+9)/3 - A138019(n). - _R. J. Mathar_, Feb 12 2021
%o (PARI) Vec((1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^4*(1 + x^2)^2) + O(x^60)) \\ _Colin Barker_, Feb 09 2018
%Y Cf. A299257.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Feb 07 2018