login
Number of nX3 0..1 arrays with every element equal to 0, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 05 2018 13:51:10

%S 1,7,6,18,30,87,202,526,1449,3893,10886,30529,85878,243545,691293,

%T 1966629,5603311,15974714,45572960,130060050,371260631,1059964088,

%U 3026563164,8642492229,24680273281,70481398248,201283524625,574841555052

%N Number of nX3 0..1 arrays with every element equal to 0, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 3 of A299249.

%H R. H. Hardin, <a href="/A299244/b299244.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -9*a(n-3) -10*a(n-4) +24*a(n-5) +14*a(n-6) -19*a(n-7) -15*a(n-8) -4*a(n-9) -32*a(n-10) +54*a(n-11) +126*a(n-12) -72*a(n-13) -96*a(n-14) -14*a(n-15) -10*a(n-16) +32*a(n-17) +24*a(n-18) +4*a(n-19) for n>20

%e Some solutions for n=10

%e ..0..1..0. .0..0..1. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .0..1..1

%e ..0..0..0. .1..0..0. .1..1..0. .1..1..0. .1..0..0. .1..0..0. .1..1..0

%e ..1..1..0. .0..0..1. .0..0..0. .0..0..0. .1..1..1. .0..0..1. .0..1..1

%e ..0..1..0. .1..1..1. .0..0..1. .0..1..0. .0..1..1. .1..0..0. .0..0..0

%e ..0..0..1. .1..1..0. .0..0..0. .1..1..0. .1..1..1. .0..0..1. .1..0..0

%e ..1..1..1. .1..1..1. .1..1..0. .0..0..0. .1..0..0. .1..1..1. .0..0..0

%e ..1..1..0. .1..1..0. .1..1..0. .0..0..1. .1..0..1. .1..1..0. .0..1..1

%e ..1..1..1. .1..1..1. .0..0..0. .0..0..0. .0..1..1. .1..1..1. .1..1..0

%e ..0..0..1. .0..0..1. .0..1..0. .1..1..0. .0..0..0. .0..0..1. .0..0..0

%e ..1..0..0. .1..0..0. .1..1..1. .0..1..1. .0..1..0. .1..0..0. .0..1..0

%Y Cf. A299249.

%K nonn

%O 1,2

%A _R. H. Hardin_, Feb 05 2018