login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299242
Ranks of {2,3}-power towers in which #2's < #3's; see Comments.
4
2, 7, 11, 12, 15, 16, 24, 26, 32, 33, 34, 38, 42, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 78, 86, 94, 98, 100, 101, 102, 106, 108, 109, 110, 126, 130, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 150, 154, 156, 157, 158, 166, 170, 172
OFFSET
1,1
COMMENTS
Suppose that S is a set of real numbers. An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1), x(2), ..., x(k)), which for k > 1 is defined as (x(1), (x(2), ..., x(k))); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences.
This sequence together with A299240 and A299241 partition the positive integers.
LINKS
EXAMPLE
The first six terms are the ranks of these towers: t(2) = (3), t(7) = (3,3), t(11) = (3,2,3), t(12) = (3,3,2), t(15) = (2,3,3), t(16) = (3,3,3).
MATHEMATICA
t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2};
t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3};
t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2};
z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6;
While[f < 13, n = f; While[n < z, p = 1;
While[p < 12, m = 2 n + 1; v = t[n]; k = 0;
While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1];
p = p + 1; n = m]]; f = f + 1]
Select[Range[1000], Count[t[#], 2] > Count[t[#], 3] &]; (* A299240 *)
Select[Range[1000], Count[t[#], 2] == Count[t[#], 3] &]; (* A299241 *)
Select[Range[1000], Count[t[#], 2] < Count[t[#], 3] &]; (* this sequence *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 07 2018
STATUS
approved