Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 31 2018 17:59:37
%S 1,1,3,9,27,79,231,675,1971,5755,16805,49071,143289,418411,1221781,
%T 3567663,10417761,30420401,88829145,259385701,757419669,2211704625,
%U 6458291945,18858546645,55067931981,160801210705,469547855419,1371104033121,4003694720243
%N Expansion of 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).
%H Vaclav Kotesovec, <a href="/A299108/b299108.txt">Table of n, a(n) for n = 0..2000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f.: 1/(1 - x*Product_{k>=1} (1 + x^k)/(1 - x^k)).
%F G.f.: 1/(1 - x/theta_4(x)), where theta_4() is the Jacobi theta function.
%F a(0) = 1; a(n) = Sum_{k=1..n} A015128(k-1)*a(n-k).
%F a(n) ~ c * d^n, where d = 2.9200517419026569743994130834319365190407162724411912701937027582419975778... is the root of the equation EllipticTheta(4, 0, 1/d) * d = 1 and c = 0.372842695601022868809531452599286285949969156503576039087883242107... = 2*Log[r]*QPochhammer[r] / (2*QPochhammer[r] * (Log[1 - r] + Log[r] + QPolyGamma[1, r]) + r*Log[r] * (r * Derivative[0, 1][QPochhammer][-1, r] - 2*Derivative[0, 1][QPochhammer][r, r])), where r = 1/d. Equivalently, c = EllipticTheta[4, 0, r]^2 / (r *(EllipticTheta[4, 0, r] - r * Derivative[0, 0, 1][EllipticTheta][4, 0, r])). - _Vaclav Kotesovec_, Feb 03 2018, updated Mar 31 2018
%p S:= series(1/(1-x/JacobiTheta4(0,x)),x,51):
%p seq(coeff(S,x,n),n=0..50); # _Robert Israel_, Feb 02 2018
%t nmax = 28; CoefficientList[Series[1/(1 - x Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
%t nmax = 28; CoefficientList[Series[1/(1 - x/EllipticTheta[4, 0, x]), {x, 0, nmax}], x]
%t nmax = 28; CoefficientList[Series[1/(1 - x QPochhammer[-x, x]/QPochhammer[x, x]), {x, 0, nmax}], x]
%Y Antidiagonal sums of A288515.
%Y Cf. A015128, A032803, A067687, A299105, A299106.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Feb 02 2018