%I #4 Feb 02 2018 08:03:38
%S 8,88,354,1617,7722,36667,173524,822065,3897261,18474589,87565905,
%T 415072759,1967506932,9326121377,44206712718,209544659717,
%U 993262158136,4708160655145,22317159667937,105785574659767,501434203894082
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299089.
%H R. H. Hardin, <a href="/A299085/b299085.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) -19*a(n-2) +43*a(n-3) -177*a(n-4) +250*a(n-5) -111*a(n-6) +598*a(n-7) +175*a(n-8) -2033*a(n-9) +835*a(n-10) -6610*a(n-11) +4604*a(n-12) +5357*a(n-13) +10181*a(n-14) +13348*a(n-15) -21106*a(n-16) -6122*a(n-17) -36475*a(n-18) +37696*a(n-19) +65360*a(n-20) +163618*a(n-21) -534123*a(n-22) +107096*a(n-23) -1235788*a(n-24) +1583118*a(n-25) +112658*a(n-26) +2520965*a(n-27) -639433*a(n-28) -3386070*a(n-29) -890603*a(n-30) -4627333*a(n-31) +6206726*a(n-32) +2036692*a(n-33) +6154747*a(n-34) +1833433*a(n-35) -4816911*a(n-36) -1469263*a(n-37) -8046242*a(n-38) +544975*a(n-39) -251241*a(n-40) +2025611*a(n-41) +2899322*a(n-42) -384613*a(n-43) +1524228*a(n-44) -1083347*a(n-45) -62502*a(n-46) -198019*a(n-47) -547484*a(n-48) +288668*a(n-49) -24160*a(n-50) +124473*a(n-51) +63988*a(n-52) -63036*a(n-53) +37665*a(n-54) -27918*a(n-55) -14368*a(n-56) +9942*a(n-57) -1736*a(n-58) -646*a(n-59) +974*a(n-60) -64*a(n-61) +264*a(n-62) -64*a(n-64) for n>66
%e Some solutions for n=5
%e ..0..0..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..0. .0..1..1..0
%e ..1..1..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0
%e ..1..1..0..1. .1..1..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..1
%e ..1..1..1..0. .1..1..1..0. .0..0..0..0. .1..1..1..1. .0..0..0..0
%e ..0..0..1..1. .1..1..1..0. .1..1..0..1. .1..0..0..1. .1..0..1..1
%Y Cf. A299089.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 02 2018
|