login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 0..1 arrays with every element equal to 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 01 2018 14:51:50

%S 3,236,7330,196699,5491159,154373324,4331069485,121483918174,

%T 3407860943824,95597844112736,2681715138096476,75227581448434048,

%U 2110287491660795753,59197879765033348597,1660621578794445613170

%N Number of nX5 0..1 arrays with every element equal to 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

%C Column 5 of A299067.

%H R. H. Hardin, <a href="/A299064/b299064.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299064/a299064.txt">Empirical recurrence of order 62</a>

%F Empirical recurrence of order 62 (see link above)

%e Some solutions for n=5

%e ..0..0..0..0..1. .0..0..0..0..0. .0..0..0..1..0. .0..0..0..1..1

%e ..0..0..0..0..1. .0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..1

%e ..1..1..1..0..1. .1..0..1..1..1. .1..1..0..0..0. .1..1..0..0..1

%e ..1..0..1..0..1. .0..1..1..0..0. .0..1..1..1..1. .0..1..1..0..1

%e ..1..1..0..1..0. .0..1..1..1..0. .0..0..0..0..1. .0..1..0..0..1

%Y Cf. A299067.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 01 2018