login
Number of nX3 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 28 2018 09:03:11

%S 0,3,1,4,4,11,26,66,171,462,1248,3419,9450,26334,73697,206960,582316,

%T 1640549,4625476,13047636,36816651,103906694,293290860,827923703,

%U 2337253142,6598367806,18628473233,52592572696,148482655256,419208157101

%N Number of nX3 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

%C Column 3 of A298895.

%H R. H. Hardin, <a href="/A298890/b298890.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -a(n-2) -5*a(n-3) -10*a(n-4) +11*a(n-5) +15*a(n-6) +2*a(n-7) -5*a(n-8) -33*a(n-9) -20*a(n-10) +47*a(n-11) +36*a(n-12) +4*a(n-14) -12*a(n-15) -2*a(n-16) +2*a(n-17) for n>18

%e Some solutions for n=7

%e ..0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .0..1..1

%e ..0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1. .1..0..1. .0..0..1

%e ..1..1..1. .1..0..0. .0..0..0. .1..1..1. .1..0..1. .1..1..1. .1..0..1

%e ..0..1..0. .1..0..1. .0..0..0. .1..1..1. .1..1..0. .0..0..1. .1..1..0

%e ..0..0..0. .1..1..1. .1..1..1. .0..0..0. .1..0..1. .0..1..0. .0..0..0

%e ..0..1..0. .1..0..1. .1..1..1. .0..0..0. .0..0..1. .1..1..0. .0..1..0

%e ..1..1..1. .0..0..0. .1..1..1. .0..0..0. .0..1..1. .1..0..0. .1..1..1

%Y Cf. A298895.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 28 2018