login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Union_{p prime, n >= 0} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).
14

%I #29 Feb 16 2018 11:46:39

%S -2,-1,0,1,2,7,14,18,23,34,47,52,62,79,98,110,119,123,142,167,194,198,

%T 223,254,287,322,359,398,439,482,488,527,574,623,674,702,724,727,782,

%U 839,843,898,959,970,1022,1087,1154,1223,1294,1298,1367,1442,1519,1598

%N Union_{p prime, n >= 0} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

%C From a problem in A269254. For detailed theory, see [Hone].

%H Andrew N. W. Hone, et al., <a href="https://arxiv.org/abs/1802.01793">On a family of sequences related to Chebyshev polynomials</a>, arXiv:1802.01793 [math.NT], 2018.

%Y Cf. A008865 (T_2(n)), A299071.

%Y Cf. A285992, A299107, A299109, A088165, A117522, A299100, A299101, A113501, A269253, A269254, A294099, A298675, A298677, A299045, A299071.

%K sign

%O 1,1

%A _L. Edson Jeffery_, _Bob Selcoe_ and _Andrew Hone_, Jan 27 2018