login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x + 1.
4

%I #40 Jan 04 2024 12:42:45

%S 1,4,9,0,2,1,6,1,2,0,0,9,9,9,5,3,6,4,8,1,1,6,3,8,6,8,4,2,3,7,8,6,2,6,

%T 7,4,2,9,0,1,2,4,2,3,0,7,3,2,4,8,9,1,0,2,4,4,1,0,8,4,9,6,3,7,1,5,6,1,

%U 1,5,5,0,1,5,1,6,4,0,8,7,8,3,1,1,0,8

%N Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x + 1.

%C Let (d(n)) = (1,0,1,0,1,0,1,...), s(n) = sqrt(s(n-1) + d(n)) for n > 0, and s(0) = 1.

%C Then s(2n) -> 1.49021612009995..., as in A298813;

%C and s(2n+1) -> 1.22074408..., as in A060007.

%C Let (e(n)) = (0,1,0,1,0,1,0,...), t(n) = sqrt(t(n-1) + e(n)) for n > 0, and t(0) = 1.

%C Then t(2n) -> 1.22074408..., as in A060007;

%C and t(2n+1) -> 1.49021612009995..., as in A298813.

%C The four solutions are: x1, this one; x2, the least A072223; and the two complex ones x3=-1.007552359378... + 0.513115795597...*i and x4, its complex conjugate; Re(x3) = Re(x4) = -(x1+x2)/2; Im(x3) = -Im(x4) = sqrt(1/(x1*x2) - Re(x3)^2). - _Andrea Pinos_, Sep 20 2023

%H Clark Kimberling, <a href="/A298813/b298813.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals sqrt((1 + 2*cos(arccos(155/128)/3))/3) + sqrt(2/3 - 2*cos(arccos(155/128)/3)/3 + sqrt(3/(1 + 2*cos(arccos(155/128)/3)))/4). - _Vaclav Kotesovec_, Sep 21 2023

%F Equals sqrt(1/3 + s/9 + 1/s) + sqrt(2/3 - s/9 - 1/s + 1 / (4 * sqrt(1/3 + s/9 + 1/s))) where s = (4185/128 + sqrt(5570289/16384))^(1/3). - _Michal Paulovic_, Dec 30 2023

%e 1.49021612009995...

%t r = x /. NSolve[x^4 - 2 x^2 - x + 1 == 0, x, 100][[4]];

%t RealDigits[r][[1]]; (* A298813 *)

%t RealDigits[Root[x^4-2x^2-x+1,2],10,120][[1]] (* _Harvey P. Dale_, May 02 2022 *)

%o (PARI) solve(x=1, 2, x^4 - 2*x^2 - x + 1) \\ _Michel Marcus_, Nov 05 2018

%Y Cf. A060007, A072223, A298814, A298815.

%K nonn,easy,cons

%O 1,2

%A _Clark Kimberling_, Feb 13 2018