Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 May 13 2018 01:11:14
%S 1,6,19,45,102,215,445,904,1826,3669,7359,14738,29500,59023,118073,
%T 236172,472376,944782,1889599,3779231,7558500,15117036,30234113,
%U 60468265,120936574,241873190,483746427,967492899,1934985848,3869971744,7739943541,15479887133
%N Solution (a(n)) of the complementary equation in Comments.
%C Define sequences a(n) and b(n) recursively, starting with a(0) = 1, b(0) = 2:
%C b(n) = least new;
%C a(n) = 2*a(n-1) + x(0)*b(n) + x(1)*b(n-1) + ... + x(n)b(0),
%C where "least new k" means the least positive integer not yet placed, x(0) = 2, and x(k) = (-1)^k for k >= 1.
%C ***
%C It appears that a(n)/a(n-1) -> 2 and that {a(n) - 2*a(n-1), n >=1 } is unbounded.
%e b(1) = least not in {a(0),b(0)} = 3;
%e a(1) = 2*a(0) + 2 b(1) - b(0) = 2*1 +2*3 - 2 = 6.
%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
%t c = 2; a = {1}; b = {2}; x = {2};
%t Do[AppendTo[b, mex[Flatten[{a, b}], 1]];
%t AppendTo[x, -Sign[Last[x]]];
%t AppendTo[a, c Last[a] + (Reverse[x] b // Total)], {25}]
%t Grid[{Join[{"n"}, Range[0, # - 1]], Join[{"a(n)"}, Take[a, #]],
%t Join[{"b(n)"}, Take[b, #]], Join[{"x(n)"}, Take[x, #]]},
%t Alignment -> ".",
%t Dividers -> {{2 -> Red, -1 -> Blue}, {2 -> Red, -1 -> Blue}}] &[18]
%t (* _Peter J. C. Moses_, May 10 2018 *)
%Y Cf. A298173, A298877.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, May 12 2018