login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1), n)/(n+1) * x^n / A(x)^( n*(n+1) ).
1

%I #7 Feb 09 2018 03:25:54

%S 1,1,3,22,294,5911,158293,5251690,206696194,9387611937,482745371458,

%T 27717788095397,1757818683339028,122058148921357056,

%U 9212494564360610855,751138761646263512978,65807775099574132000968,6166278653572358495161057,615421469545011786309942067,65183859793912213778457542207,7303117991652113167690085149033

%N G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1), n)/(n+1) * x^n / A(x)^( n*(n+1) ).

%e G.f.: A(x) = 1 + x + 3*x^2 + 22*x^3 + 294*x^4 + 5911*x^5 + 158293*x^6 + 5251690*x^7 + 206696194*x^8 + 9387611937*x^9 + 482745371458*x^10 + 27717788095397*x^11 + 1757818683339028*x^12 + 122058148921357056*x^13 + 9212494564360610855*x^14 + 751138761646263512978*x^15 + ...

%e such that

%e A(x) = 1 + C(2,1)/2*x/A(x)^2 + C(6,2)/3*x^2/A(x)^6 + C(12,3)/4*x^3/A(x)^12 + C(20,4)/5*x^4/A(x)^20 + C(30,5)/6*x^5/A(x)^30 + C(42,6)/7*x^6/A(x)^42 + C(56,7)/8*x^7/A(x)^56 + ...

%e more explicitly,

%e A(x) = 1 + x/A(x)^2 + 5*x^2/A(x)^6 + 55*x^3/A(x)^12 + 969*x^4/A(x)^20 + 23751*x^5/A(x)^30 + 749398*x^6/A(x)^42 + 28989675*x^7/A(x)^56 + ... + A135861(n)*x^n/A(x)^(n*(n+1)) + ...

%t terms = 21; A[_] = 1; Do[A[x_] = 1 + Sum[Binomial[n*(n+1), n]/(n+1)*x^n/ A[x]^(n*(n+1)), {n, terms}] + O[x]^terms, {terms}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Feb 09 2018 *)

%o (PARI) {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m*(m+1),m)/(m+1) * x^m/Ser(A)^(m*(m+1)) ))); A[n+1]}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A298692, A135861.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 03 2018