%I
%S 1,0,1,1,1,2,1,2,1,2,2,2,1,5,2,10,4,12,12,11,19,23,43,50,55,78,120,
%T 126,234,207,407,385,701,712,1090,1231,1850,2102,3054,3385,4988,5584,
%U 7985,9746,12205,15737,18968,25157,30927,39043,47708,61915,74592,99554
%N Number of partitions of n^2 into distinct squares > 1.
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%H <a href="/index/Par#part">Index entries for related partitioncounting sequences</a>
%F a(n) = [x^(n^2)] Product_{k>=2} (1 + x^(k^2)).
%F a(n) = A280129(A000290(n)).
%e a(5) = 2 because we have [25] and [16, 9].
%Y Cf. A000290, A001156, A030273, A033461, A037444, A078134, A092362, A093115, A093116, A280129, A298640.
%K nonn
%O 0,6
%A _Ilya Gutkovskiy_, Jan 24 2018
