OFFSET
1,1
COMMENTS
For even number n, if n-5 and n-3 are both composite then A056240(n) belongs to this sequence. The union of terms in this sequence together with those in A288313 and A297150 combine to make A056240(2n), for n >= 3. A288313(n) = A056240(A298252(n)), A297150(n) = A056240(A297925(n)), and the terms of this sequence correspond to A056240(A298366). Distinct sequences A298252, A297925 and A298366 form a partition of the nonnegative even integers (A005843) >= 6. These partitions holds because any even integer n >= 6 is such that, either n-3 is prime (A298252), or n-5 is prime but n-3 is composite (A297925), or both n-5 and n-3 are composite (A298366).
LINKS
Michel Marcus, Table of n, a(n) for n = 1..2000
EXAMPLE
PROG
(PARI) A056240(n, p=n-1, m=oo)=if(n<6 || isprime(n), n, n==6, 8, until(p<3 || (n-p=precprime(p-1))*p >= m=min(m, A056240(n-p)*p), ); m);
is_A298366(n)= !isprime(n-5) && !isprime(n-3) && !(n%2) && (n>5);
lista(nn) = {for (n=0, nn, if (is_A298366(n), print1(A056240(n), ", ")); ); } \\ Michel Marcus, Apr 03 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
David James Sycamore, Jan 26 2018
STATUS
approved