login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..1 arrays with every element equal to 0, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 22 2018 06:14:25

%S 1,8,2,3,41,38,70,374,664,1327,4668,10974,24373,70732,181600,434550,

%T 1167179,3047993,7603212,19855359,51764205,131757754,340961976,

%U 885345035,2273546860,5869335895,15197343665,39165876002,101074648923,261308007058

%N Number of nX4 0..1 arrays with every element equal to 0, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A298575.

%H R. H. Hardin, <a href="/A298571/b298571.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-2) +26*a(n-3) -16*a(n-4) -20*a(n-5) -278*a(n-6) +92*a(n-7) +146*a(n-8) +1603*a(n-9) -188*a(n-10) -487*a(n-11) -5508*a(n-12) -255*a(n-13) +587*a(n-14) +11843*a(n-15) +2118*a(n-16) +867*a(n-17) -16392*a(n-18) -4788*a(n-19) -3812*a(n-20) +14685*a(n-21) +5603*a(n-22) +5402*a(n-23) -8344*a(n-24) -3708*a(n-25) -4188*a(n-26) +2776*a(n-27) +1216*a(n-28) +1696*a(n-29) -384*a(n-30) -128*a(n-31) -256*a(n-32) for n>33

%e Some solutions for n=5

%e ..0..1..1..1. .0..1..1..0. .0..0..1..1. .0..1..0..0. .0..0..1..0

%e ..1..1..1..0. .1..1..1..1. .1..0..1..0. .1..1..0..1. .1..0..1..1

%e ..1..1..1..1. .1..1..1..1. .0..0..1..1. .1..1..0..0. .1..1..1..1

%e ..1..1..0..0. .1..0..1..1. .0..0..1..1. .1..1..0..0. .1..1..1..1

%e ..0..1..0..1. .0..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..0

%Y Cf. A298575.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 22 2018