login
Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 21 2018 06:45:44

%S 1,18,14,33,74,226,716,2211,6851,21462,67050,211080,665938,2101358,

%T 6629389,20925470,66062395,208588663,658697076,2080208913,6569640501,

%U 20748537569,65530617366,206970394282,653697367667,2064661074519

%N Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A298554.

%H R. H. Hardin, <a href="/A298550/b298550.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A298550/a298550.txt">Empirical recurrence of order 72</a>

%F Empirical recurrence of order 72 (see link above)

%e Some solutions for n=7

%e ..0..1..1..0. .0..1..1..0. .0..0..1..0. .0..0..1..1. .0..0..1..1

%e ..1..1..0..0. .0..0..1..1. .1..0..1..1. .0..0..1..0. .0..0..1..0

%e ..1..0..1..1. .1..1..0..1. .0..0..0..0. .1..1..1..1. .1..1..1..1

%e ..0..1..1..1. .1..1..1..0. .1..0..0..1. .0..1..1..0. .0..1..1..0

%e ..0..1..1..1. .1..1..1..0. .0..0..0..0. .1..1..1..1. .1..1..1..1

%e ..0..0..0..0. .0..0..0..0. .1..0..1..1. .0..0..1..0. .0..1..0..0

%e ..0..1..0..1. .1..0..1..0. .0..0..1..1. .1..0..1..1. .1..1..0..1

%Y Cf. A298554.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 21 2018