Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jan 21 2018 06:09:26
%S 2,61,588,4771,41762,367315,3215618,28178880,246983338,2164554841,
%T 18970525357,166262705076,1457166433082,12770963458496,
%U 111927910337221,980964098035827,8597413843575416,75349879370232982,660385138424897718
%N Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A298547.
%H R. H. Hardin, <a href="/A298543/b298543.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 8*a(n-1) +6*a(n-2) +36*a(n-3) -199*a(n-4) -489*a(n-5) -607*a(n-6) +190*a(n-7) +2704*a(n-8) +3152*a(n-9) +1937*a(n-10) -4117*a(n-11) -883*a(n-12) -1120*a(n-13) +4348*a(n-14) -5819*a(n-15) -5356*a(n-16) +140*a(n-17) +908*a(n-18) -6185*a(n-19) -1785*a(n-20) +9257*a(n-21) +3188*a(n-22) -3046*a(n-23) +1121*a(n-24) +645*a(n-25) -4057*a(n-26) +101*a(n-27) +2424*a(n-28) -327*a(n-29) -420*a(n-30) +312*a(n-31) -14*a(n-32) -64*a(n-33) -6*a(n-35) +2*a(n-36) for n>39
%e Some solutions for n=6
%e ..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0
%e ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
%e ..0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..0. .0..1..0..1
%e ..1..0..0..0. .1..0..1..1. .1..0..0..1. .0..1..1..0. .0..1..1..1
%e ..0..1..1..0. .1..0..1..1. .0..1..1..0. .1..0..1..0. .0..0..0..0
%e ..1..0..0..0. .0..0..0..0. .0..1..0..1. .1..0..0..1. .0..1..1..1
%Y Cf. A298547.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 21 2018