%I #5 Jan 22 2018 03:07:53
%S 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,35,37,41,43,47,49,
%T 53,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127,
%U 128,131,137,139,143,149,151,157,163,167,169,173,175,179,181,187
%N Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of nodes.
%e Sequence of trees begins:
%e 1 o
%e 2 (o)
%e 3 ((o))
%e 4 (oo)
%e 5 (((o)))
%e 7 ((oo))
%e 8 (ooo)
%e 9 ((o)(o))
%e 11 ((((o))))
%e 13 ((o(o)))
%e 16 (oooo)
%e 17 (((oo)))
%e 19 ((ooo))
%e 23 (((o)(o)))
%e 25 (((o))((o)))
%e 27 ((o)(o)(o))
%e 29 ((o((o))))
%e 31 (((((o)))))
%t nn=500;
%t primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
%t Select[Range[nn],SameQ@@MGweight/@primeMS[#]&]
%Y Cf. A000081, A007097, A061775, A111299, A214577, A276625, A290760, A291442, A297571, A298478, A298534, A298536, A298537.
%K nonn
%O 1,2
%A _Gus Wiseman_, Jan 21 2018