login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
7

%I #4 Jan 20 2018 07:08:42

%S 1,2,2,4,7,4,8,13,13,8,16,29,20,29,16,32,69,27,27,69,32,64,137,43,41,

%T 43,137,64,128,301,70,101,101,70,301,128,256,705,106,158,178,158,106,

%U 705,256,512,1461,169,263,253,253,263,169,1461,512,1024,3193,276,481,423,388

%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.

%C Table starts

%C ...1....2...4...8...16...32...64..128..256..512.1024..2048..4096..8192..16384

%C ...2....7..13..29...69..137..301..705.1461.3193.7373.15729.34405.78569.170813

%C ...4...13..20..27...43...70..106..169..276..444..720..1183..1947..3207...5311

%C ...8...29..27..41..101..158..263..481..776.1387.2567..4539..8077.14329..25589

%C ..16...69..43.101..178..253..423..715.1082.1821.3203..5330..8978.15692..26461

%C ..32..137..70.158..253..388..434..830.1351.1892.3026..5492..8206.13206..23026

%C ..64..301.106.263..423..434..628.1067.1267.1943.2973..4583..6623.10201..15735

%C .128..705.169.481..715..830.1067.1708.2118.2978.4984..7136.10725.17602..27551

%C .256.1461.276.776.1082.1351.1267.2118.2860.3333.5106..7796.10253.15979..24788

%H R. H. Hardin, <a href="/A298494/b298494.txt">Table of n, a(n) for n = 1..1010</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1)

%F k=2: a(n) = 3*a(n-1) -2*a(n-2) +8*a(n-3) -20*a(n-4) +8*a(n-5) for n>6

%F k=3: [order 11] for n>12

%F k=4: [order 41] for n>43

%e Some solutions for n=9 k=4

%e ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..0..0. .0..0..1..0

%e ..1..1..0..0. .1..0..1..1. .1..0..1..0. .1..1..1..1. .1..1..0..1

%e ..1..1..0..0. .0..1..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..1

%e ..0..1..0..1. .0..1..1..1. .1..0..1..0. .1..1..1..1. .1..0..1..0

%e ..1..0..1..0. .1..1..0..0. .0..1..0..1. .0..1..1..0. .1..0..1..0

%e ..0..1..0..1. .0..0..1..1. .1..1..0..0. .1..1..1..1. .1..0..1..0

%e ..1..1..0..0. .1..0..0..0. .1..1..0..0. .0..0..0..0. .0..1..1..1

%e ..1..1..0..0. .1..0..1..1. .0..1..0..1. .1..0..0..1. .0..1..0..0

%e ..0..1..0..1. .1..0..0..1. .1..0..1..0. .0..0..0..0. .0..1..1..0

%Y Column 1 is A000079(n-1).

%Y Column 2 is A297883.

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Jan 20 2018